Physiological effects of envenomation by two different doses of the viper *Echis coloratus* crude venom on biochemical parameters in serum of Guinea pigs at different times.

Muhammad M. A. Salman
Zoology Department, Faculty of Science, South Valley University, Qena, Egypt.

ABSTRACT

The eastern carpet viper *Echis coloratus* widely distributed from Africa (eastern Egypt). In the present study the effects of crude venom of the viper *Echis coloratus* on serum biochemical parameters of guinea pigs. Adult male guinea pigs (550 ± 25 g body weigh) were divided into three groups (15 each). In the control group, guinea pigs were interaperitoneally (i.p) injected with 50 µL saline solution. The second group was i.p. injected with 0.1 µgm/g b.w. of crude venom in 50 µL saline solutions. The third group was i.p. injected with 0.2 µgm/g. b.w. of the crude venom in 50 µL saline solution. The results indicated that the injection of crude venom of the viper *Echis coloratus* induced a significant decrease in total serum protein, albumin, globulin and uric acid within 1, 2 and 4 hrs. after injection. In contrast, the levels of glucose, cholesterol, triglycerides, urea and creatinine were increased significantly in envenomated Guinea pigs. Viper *Echis coloratus* crude venom caused hepatic and renal dysfunction in envenomated Guinea pigs.

Key words: Snake venom, Viper *Echis coloratus*, biochemical parameters and Guinea pigs.

INTRODUCTION

Snake venom is a complex mixture of many substances, such as toxins, enzymes, growth factors, activators, and inhibitors with a wide spectrum of biological activities (Theakston, 1983 and Rahmy and Hemmaid, 2000). They are also known to cause different metabolic disorders by altering the cellular inclusions and enzymatic activities of different organs (Aiesenberg, 1981). The eastern carpet viper *Echis coloratus* widely distributed from Africa (eastern Egypt). (Gasperetti, 1988; Cherlin, 1990 and Warrell, 1995). This species has got the highest incidence of snake bites, next to *cerastes gasperettii* (Al-Sadoon, 1991 and Al-Sadoon et al., 1991). The bites of the *Echis* genus could be response for the highest mortality level that exceeded all other snake genera, with a death rate of 7-15% of untreated victims (Moav et al., 1963 and Warrell and Arnett, 1976). Clinical symptoms of *Echis* envenomation are characterized by highly complex pathophysiological features of local as well as systemic nature (Warrell, 1993). Several investigators have studied the biochemical and pharmacological effects of the venom from different species that belong genus *Echis* (Theakston, 1983; Al-Gammaz, et al., 1999 and Yamazaki and Morita, 2007). However, venom components may be altered by the geographical location and habitat of the snake (Zingali et al., 1993; Sasa, 1999 and Salazar et al., 2007). Additionally, zoological distribution and environmental condition could influence the overall biological behavior of snake venoms of the same species (Hassan et al., 1980; Werner et al., 1991; Werner, 1994; Tan and Ponnudurai, 1999; and Warrell, 1997). The present study was designed to investigate the effects of different doses of the viper
Echis coloratusis crude venom on the serum biochemical parameters of Guinea pigs over a period of time after venom injection.

MATERIALS AND METHODS

Crude venom was obtained from the eastern carpet viper *Echis coloratus* kept in a serpentarium at the Department of Zoology, Faculty of Science, and South Valley University. The snakes were collected from the Qena region of Egypt. Venom was milked, lyophilized, stored in a desiccator at 4 °C in the dark and reconstituted in saline solution prior to use. LD₅₀ of crude venom was determined as described by Meier and Theakston (1986). The LD 50 of venom was found to be 0.3 µgm/gm.of Guinea pigs.

Study design:

Forty five adult male Guinea pigs weighing 550-570 g were used. Guinea pigs were selected from the Animal House Facility of Egyptian Organization for biological products and Vaccines (VACSERA), Helwan, Cairo, Egypt. Animals were housed in standard condition and fed with normal diet and water *ad libitum*. The Guinea pigs were divided into three groups as the following:

- **Group I:** 15 animals were injected interaperitoneally (i.p.) with 50 µL physiological saline (0.9 % Na Cl) and served as a control.
- **Group II:** 15 animals were received a single low dose (0.1 µ gm/g body weight) of the viper *Echis coloratus* crude venom in 50 µL saline solution interaperitoneally (i.p).
- **Group III:** 15 animals were received a single low dose (0.2 µgm/g body weight) of the viper *Echis coloratus* crude venom in 50 µL saline solutions interaperitoneally (i.p).

Five animals of each group (I, II and III) were sacrificed at 1, 2 and 4 hours respectively post-injection of crude venom.

Serum analysis:

Blood was collected from each animal into plain centrifuge tubes, left for 1 hr. at room temperature for clotting. Serum was separated by centrifugation at 3000g for 30 min. and analyzed, for the concentration of total protein, albumin, urea, creatinine, uric acid, glucose, cholesterol and triglycerides determination. Kits purchased from Spinreact, S. A. Cтра. Santa Coloma, Spain. All other chemicals used were of analytical reagent grade. Glucose determination was carried out according to the method Trinder (1969). Determination of total serum protein was estimated according to Peters (1968) method. Serum albumin was determined according to the method described by Doumas et al. (1971 and 1972). While; serum globulin was obtained from the difference between the total serum protein and serum albumin. Cholesterol was determined by enzymatic method as described by Richmond (1973), while triglycerides were determined by the enzymatic colorimetric method as described by Young (1975). Creatinine was determined by kinetic method described by Hare (1950), while determination of urea was according to the enzymatic method of (Patton and Crouch, 1977). Serum uric acid was determined by quantitative determination method of Young (1975).

Statistical analysis:

Data are presented as standard error (S.E.) of the means and were statistically analyzed using SPSS version 8.0 for Software. Differences between moments were analyzed by Kruskal-Wallis Test and parameters of each test group were compared with control group by Mann-Whitney Test. Results were considered significant when p value was lower than 0.05.
Physiological effects of envenomation by two doses of the viper E. coloratus crude venom

RESULTS

1- Effects of the different doses (i.p) injection of viper Echis coloratus crude venom on the levels of serum total proteins, albumin and globulin in serum.

A) Serum total protein content: The results presented in table (1) show that the i.p. injection of 0.1µgm/gm (b. w.) in the serum of Guinea pigs did not induce significant difference change of their serum total protein content from their corresponding control values after 1 hour. On the other hand, i.p. injection of 0.1µgm/gm induced significant decreases of their means of serum total protein content. These decreases were pronouncing and reached 19.82% (P<0.05) after 2 hours and 26.54% (P<0.01) after 4 hours. However, the injection of 0.2µgm/gm (b. w.) of the crude venom after 1, 2 and 4 hours of injection caused significant decreases of the means serum total protein levels from that of the corresponding control value. These decreases were pronouncing and reached 20.63% (P<0.05) after1 hour, 29.95% (P<0.01) after 2 hours and 37.09% (P<0.01) after 4 hours (Table 1).

Table (1): The Effects of the different doses(i.p) injection of viper Echis coloratus crude venom on the levels of serum total proteins (mg/dl), albumin (mg/dl) and globulin (mg/dl) in Guinea pigs at the 1, 2 and 4 hours after crude venom injection

<table>
<thead>
<tr>
<th>Time</th>
<th>Parameter</th>
<th>Group1 (0.9 NaCl)</th>
<th>Group 2 (0.1µgm/g.)</th>
<th>Group2 (0.2µgm/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One hour post-</td>
<td>Total protein</td>
<td>Mean ± S.E</td>
<td>Change %</td>
<td>P- value</td>
</tr>
<tr>
<td>injection</td>
<td>Total protein</td>
<td>6.30±0.34</td>
<td>-10.27%</td>
<td>P<0.05</td>
</tr>
<tr>
<td></td>
<td>Albumin</td>
<td>3.31±0.21</td>
<td>-8.32%</td>
<td>P<0.05</td>
</tr>
<tr>
<td></td>
<td>Globulin</td>
<td>3.01±0.32</td>
<td>-8.29%</td>
<td>P<0.05</td>
</tr>
<tr>
<td>Two hour post-</td>
<td>Total protein</td>
<td>6.51±0.11</td>
<td>-5.22±0.21</td>
<td>P=0.05</td>
</tr>
<tr>
<td>injection</td>
<td>Albumin</td>
<td>3.54±0.31</td>
<td>-8.43%</td>
<td>P=0.05</td>
</tr>
<tr>
<td></td>
<td>Globulin</td>
<td>2.97±0.22</td>
<td>-8.66%</td>
<td>P<0.01</td>
</tr>
<tr>
<td>Four hour post-</td>
<td>Total protein</td>
<td>6.39±0.44</td>
<td>-4.70±0.12</td>
<td>P<0.01</td>
</tr>
<tr>
<td>injection</td>
<td>Albumin</td>
<td>3.44±0.37</td>
<td>-8.29%</td>
<td>P<0.01</td>
</tr>
<tr>
<td></td>
<td>Globulin</td>
<td>2.95±0.39</td>
<td>-8.32%</td>
<td>P<0.01</td>
</tr>
</tbody>
</table>

N = 5 animals were used in each group.
P = Significantly different from the control.
NS =Insignificant different from the control.

B) Serum albumin content: Table (1) show also that the i.p. injection of 0.1µgm/gm (b. w.) in the Guinea pigs did not induce significant difference change of their serum albumin content from their corresponding control values after 1 and 2 hour. However, i.p. injection of 0.1µgm/gm induced significant decreases of the mean of serum albumin content. These decrease was pronouncing and reached 18.02% (P<0.05) after 4 hours. On the other hand, the injection of 0.2µgm/gm (b. w.) of the crude venom after 1, 2 and 4 hours of injection caused significant decreases of the means serum albumin levels from that of the corresponding control value. These decreases
were pronouncing and reached 10.27% (P<0.05), 21.75% (P<0.05) and 32.27% (P<0.01) after 1, 2 and 4 hours of injection, respectively as shown (Table 1).

C) Serum globulin content: As indicated in table (1) also that the i.p. injection of 0.1µgm/gm did not induce significant difference change of their serum globulin content from their corresponding control values after 1 hour. However, i.p. injection of 0.2µgm/gm induced significant decreases of the means serum globulin content. These decreases were pronouncing and reached 32.66% (P<0.01) and 36.27% (P<0.01) after 2 and 4 hours, respectively. On the other hand, the injection of 0.2µgm/gm (b. w.) of the crude venom after 1, 2 and 4 hours of injection caused significant decreases of the means serum globulin levels from that of the corresponding control value. These decreases were pronouncing and reached 32.56% (P<0.01), 39.73% (P<0.01) and 42.71% (P<0.01) after 1, 2 and 4 hours of injection, respectively as shown (Table 1).

2- Effects of the different doses (i.p) injection of viper Echis coloratus crude venom on the levels of creatinine, urea and uric acid.

A) Serum creatinine content: The results presented in table (2) show that the injection of 0.1µgm/gm to Guinea pigs caused significant increases in serum creatinine. These increases were 33.33% (P<0.05), 95.56% (P<0.01) and 95.65% (P<0.01) after 1, 2 and 4 hours of injection, respectively. On the other hand, the injection of crude venom; 0.2µgm/gm caused also significant increases. These increases were 102.38% (P<0.001), 211.11% (P<0.001) and 182.61% (P<0.001) after 1, 2 and 4 hours of injection, respectively as shown (Table 2).

Table (2): The Effects of the different doses (i.p) injection of viper Echis coloratus crude venom on the levels of serum creatinine (mg/dl), urea (mg/dl) and uric acid (mg/dl) in Guinea pigs at the 1, 2 and 4 hours after crude venom injection.

<table>
<thead>
<tr>
<th>Experimental and doses</th>
<th>Parameter</th>
<th>Group 1 (0.9 NaCl)</th>
<th>Group 2 (0.1µgm/g)</th>
<th>Group2 (0.2µgm/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creatinine</td>
<td>One hour post-injection</td>
<td>Mean ± S.E Change % P- value</td>
<td>0.42 ± 0.06 +33.33 % P<0.05</td>
<td>0.56 ± 0.03 +102.38% P<0.001</td>
</tr>
<tr>
<td></td>
<td>Two hour post-injection</td>
<td>Mean ± S.E Change % P- value</td>
<td>0.88 ± 0.04 +95.56% P<0.01</td>
<td>0.90 ± 0.04 +211.11% P<0.001</td>
</tr>
<tr>
<td></td>
<td>Four hour post-injection</td>
<td>Mean ± S.E Change % P- value</td>
<td>1.10 ± 0.09 +42.71% P<0.01</td>
<td>1.20 ± 0.09 +182.61% P<0.001</td>
</tr>
<tr>
<td>Urea</td>
<td>One hour post-injection</td>
<td>Mean ± S.E Change % P- value</td>
<td>42.22 ± 3.20 +114.21% P<0.01</td>
<td>99.98 ± 3.60 +136.13% P<0.001</td>
</tr>
<tr>
<td></td>
<td>Two hour post-injection</td>
<td>Mean ± S.E Change % P- value</td>
<td>1.60 ± 0.06 +25.00 % P<0.05</td>
<td>1.50 ± 0.08 +41.33 % P<0.05</td>
</tr>
<tr>
<td></td>
<td>Four hour post-injection</td>
<td>Mean ± S.E Change % P- value</td>
<td>1.50 ± 0.08 +26.67 % P<0.05</td>
<td>1.50 ± 0.08 +41.33 % P<0.05</td>
</tr>
<tr>
<td>Uric acid</td>
<td>One hour post-injection</td>
<td>Mean ± S.E Change % P- value</td>
<td>42.22 ± 3.30 +87.44 % P<0.01</td>
<td>98.99 ± 2.90 +134.46% P<0.001</td>
</tr>
<tr>
<td></td>
<td>Two hour post-injection</td>
<td>Mean ± S.E Change % P- value</td>
<td>1.60 ± 0.06 +25.00 % P<0.05</td>
<td>1.50 ± 0.08 +41.33 % P<0.05</td>
</tr>
<tr>
<td></td>
<td>Four hour post-injection</td>
<td>Mean ± S.E Change % P- value</td>
<td>1.50 ± 0.08 +26.67 % P<0.05</td>
<td>1.50 ± 0.08 +41.33 % P<0.05</td>
</tr>
</tbody>
</table>

N = 5 animals were used in each group.
P = significantly different from the control.
NS = Insignificant

B) Serum urea content: The results presented in table (2) show that the injection of 0.1µgm/gm to Guinea pigs caused significant increases in serum urea. These increases were 52.60% (P<0.01), 114.21% (P<0.01) and 107.11% (P<0.01) after 1, 2 and 4 hours of injection crude venom, respectively. The injection of crude venom;
Physiological effects of envenomation by two doses of the viper *E. coloratus* crude venom

0.2µgm/gm caused also significant increases. These increases were 83.79% (P<0.01), 136.81% (P<0.001) and 134.46% (P<0.01) after 1, 2 and 4 hours of injection, respectively as shown in (Table 2).

C) Serum uric acid content: As indicated in table (2), the present study shows that the injection of 0.1µgm/gm to Guinea pigs caused non significant decrease in serum uric acid 1 hour of injection. However, after 2 and 4 hours of injection of 0.1µgm/gm the decreases were significantly. On the other hand, the injection of 0.2µgm/gm to Guinea pigs caused significant decreases in serum uric. These decreases were (20%; P<0.05, 43.75%; P<0.05 and 41.33%; P<0.05) after 1, 2 and 4 hours, respectively.

3- Effects of the different doses (i.p) injection of viper *Echis coloratus* crude venom on the levels of creatinine, urea and uric acid.

A) The levels of serum glucose: The presented in table (3) show that the injection of 0.1µgm/gm to animals caused significant increases in serum glucose. These increases were (56.88%; P<0.05, 55.78%; P<0.05 and 49.39%; P<0.05) after 1, 2 and 4 hours of injection, respectively. The injection of crude venom; 0.2µgm/gm caused also significant increases. These increases were 83.99% (P<0.05), 74.21% (P<0.05) and 54.54% (P<0.05) after 1, 2 and 4 hours of injection, respectively as shown in (Table 3).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Group1 (0.9 NaCl)</th>
<th>Group 2 (0.1µgm/gm)</th>
<th>Group2 (0.2µgm/gm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose</td>
<td>Mean ± S.E</td>
<td>Change %</td>
<td>P – value</td>
</tr>
<tr>
<td></td>
<td>99.7±6.22</td>
<td>156.4±6.32</td>
<td>183.4±6.27</td>
</tr>
<tr>
<td></td>
<td>+56.88 %</td>
<td>P<0.05</td>
<td>83.99%+P<0.05</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>Mean ± S.E</td>
<td>Change %</td>
<td>P – value</td>
</tr>
<tr>
<td></td>
<td>85.5±7.41</td>
<td>140.3±7.41</td>
<td>155.3±7.33</td>
</tr>
<tr>
<td></td>
<td>+64.13 %</td>
<td>P<0.05</td>
<td>+81.66 %P<0.05</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>Mean ± S.E</td>
<td>Change %</td>
<td>P – value</td>
</tr>
<tr>
<td></td>
<td>84.1±5.22</td>
<td>123.5±5.11</td>
<td>142.2±5.11</td>
</tr>
<tr>
<td></td>
<td>+46.89 %</td>
<td>P<0.05</td>
<td>+69.09 %P<0.05</td>
</tr>
</tbody>
</table>

B) The levels of serum cholesterol: The results presented in table (3) show that the injection of 0.1µgm/gm to animals caused significant increases in serum cholesterol. These increases were 64.13% (P<0.05), 52.08% (P<0.05) and 37.44% (P<0.05) after 1, 2 and 4 hours of injection crude venom, respectively. The injection of crude venom; 0.2µgm/gm caused also significant increases. These increases were 81.66% (P<0.05), 74.89% (P<0.05) and 56.61% (P<0.05) after 1, 2 and 4 hours of injection, respectively as shown in (Table 3).
C) The levels of serum triglycerides: As indicated in table (3), the present study shows that the injection of 0.1µgm/gm to Guinea pigs caused significant increases in serum triglycerides. These increases were 46.89% (P<0.05), 31.33% (P<0.05) and 25.25% (P<0.05) after 1, 2 and 4 hours of injection crude venom, respectively. The injection of crude venom; 0.2µgm/gm caused also significant increases. These increases were (69.09%; P<0.05, 61.83%; P<0.05 and 47.75%; P<0.05), after 1, 2 and 4 hours of injection, respectively as shown in (Table 3).

DISCUSSION

Several works dealing with the effects of snake venoms in blood cells, marrow cells and in cells from other organs of animals, like muscle, liver, kidney and skin, showed varying results, depending on the experimental concentrations, exposure time, site of injection, and type of toxin (Maria et al., 2003 and Fox and Serrano, 2008). The liver is a major producer for most of serum proteins and its total level in the blood is a main liver function test. It is established that liver is the main source of plasma albumin. Decrease in plasma albumin is mainly due to the diminishing of its synthesis in hepatic cells, accompanied by losses of large amounts of albumin into the urine and gastrointestinal tract due to damage kidney and intestinal mucosa (West, 1985). It is worth mentioning that bone marrow is the main site of immunoglobulin production. Bone marrow plasma cells are derived from plasma plastic cells that have been generated in the peripheral lymphoid organs following antigen stimulation and have migrated to the bone marrow. These cells find in the bone marrow environment the survival and activation signals that allow them to generate mature plasma cells to produce high amounts of Igs (Hibi and Dosh, 1986; Liu et al., 1992 and MacMillan et al., 1994). Moreover, cytokines such as IL-6 and IL-10 control the production of Igs by non-dividing mature plasma cells (Roldan et al., 1992 a and b).

The present study revealed (Table 1) that, the injection of crude venom of viper Echis coloratusis causes a reduction in serum total proteins, albumin, globulin and uric acid in envenomated Guinea pigs at 1, 2 and 4 hours post-injection of crude venom. These findings are in agreement with other investigators who reported that, the reduction in serum total proteins, albumin, globulin and uric acid in envenomated rats was observed in laboratory animals injected with viper snake venoms (Abdul-Nabi et al., 1997; Fahim 1998 and Al-Jammaz et al., 1998 and 1999). It might be assumed that, the reduced levels of these serum constituents could be due to disturbances in renal functions as well as haemorrhages in some internal organs. In addition, the increasing in vascular permeability and haemorrhages in vital organs due to the toxic action of various snake venoms were described by (Meier and Stocker 1991; March et al., 1997).

High levels creatinine indicates several disturbances in the kidney (Maxine and Benjamine, 1985). In the present study (Table 2), the rise in serum urea and creatinine levels indicates impairment of renal function. Similar observations were reported in rats following administration of various viper venoms (Abdel-Nabi, 1993; Rahmy et al., 1995; Omran et al., 1997; Abdel-Nabi et al., 1997 and Schneemann et al., 2004). Such increased vascular permeability, together with, renal damage would further aggravate the accompanying hypoproteinemia and hypoalbuminaemia. Furthermore, the rise in serum urea and creatinine associated with the reduction of serum uric acid level observed, in the present study, supports the proposed impairment of renal function. Similar observations were reported following various viper envenomation of rats (Sant and Purandare, 1972; Rahmy et al., 1995; Abdul-
Physiological effects of envenomation by two doses of the viper *E. coloratus* crude venom

Nabi *et al.*, 1997 and Omran *et al.*, 1997). The findings that urea and creatinine acutely increased after the *Bothrops jararaca* venom infusion confirmed the acute renal damage in the present study experimental model and are in agreement with previous studies (Burdmann *et al.*, 1993) in which a significant decrease in the glomerular filtration rate and diuresis were observed in anesthetized rats infused with the crude venom of snake *Bothrops jararaca*.

The increases in serum cholesterol and triglycerides levels in envenomated Guinea pigs observed in the present study (Table 3), could be due to the hepatocytes damage rendering them unable to phosphorylate the increasing amounts of fatty acids, hence leading to fatty liver and alteration of cell membranes of tissues (El-Asmar *et al.*, 1979). Such disturbances of serum electrolytes were reported in rats following various snake venom injections (Mohamed *et al.*, 1964; Al-Jammaz, 1995 and Lewis and Gutmann, 2004). Furthermore, Meier and Stocker (1991) suggested that, these disturbances might be due to acute nephropathy following viper bites. In addition, Mohamed *et al* (1980) speculate that this effect was brought about by stimulation of adrenal cortex leading to aldosterone secretion. It worthy to mention that, several studies have been made on the metabolic, cardiovascular and haematological effects of viper venoms on man and experimental animals (Tilbury *et al.*, 1987; Soslau *et al.*, 1988; Abu-Sinna *et al.*, 1993; Abdul-Nabi *et al.*, 1997 and Fahim, 1998), and found that, various venoms viper cause alterations of rat metabolism (Al-Jammaz *et al.*, 1998 and 1999). Furthermore, several workers reported that, acute renal failure characterized by vascular lesions and tubular necrosis in the renal cortex following various snake bites (Tilbury *et al.*, 1987).

It is well known that, snakes venoms caused an increase in serum glucose level in the envenomated animals. Snake venoms were found to produce hyperglycemia in rats and mice (Mohamed *et al.*, 1980; Abdul-Nabi *et al.*, 1997; Fahim, 1998 and Al-Jammaz *et al.*, 1999; Pung *et al.*, 2005 and Sleat *et al.*, 2006).

In the present study, the levels of serum glucose were significantly increased after 1, 2 and 4 hours in the envenomated guinea pigs. The increases in serum glucose levels could be attributed to the effects of the venom on glycogen metabolism in the hepatocytes, muscle fibers and medullary catecholamines that stimulate glycogenolysis and gluconeogenesis in those tissues (Ohhira *et al.*, 1991, Abdul-Nabi *et al.*, 1997 and March *et al.*, 1997).

In conclusion, the measurements of biochemical parameters following viper *Echis coloratus* crude venom injection, clearly demonstrate the disturbances of vital organs, especially liver, kidney, bone marrow and muscles. Such these disturbances are remaining for 4 hr after envenomation of Guinea pigs at least.

REFERENCES

Physiological effects of envenomation by two doses of the viper *E. coloratus* crude venom

ARABIC SUMMARY

التآثيرات الفسيولوجية الناجمة عن التسمم بجرعتين مختلفتين من السم الخام لأفعي السجاد على المكونات الكيميائية

محمد محمود علي سالمان

جامعة جنوب الوادي - كلية العلوم بقنا، قسم علم الحيوان

لمحاوله الصماد في صعيد مصر تحظى بنوعية الدواء لعناصرها وآلائه بعض المشروبات المهمة بها.

هذا البحث يهدف إلى دراسة تآثير جرعتين مختلفتين في التركيز من سم حية السجاد على حيوانات التجربة (خنازير غينيا) لمعارفة مدى تأثير السم على خنازير غينيا التي تنشاه مع الإنسان في بعض الجوائح الفسيولوجية. ومن ثم قد تم تقسيم الحيوانات (خنازير غينيا) إلى ثلاث مجموعات، المجموعة الأولى حققت بجراحاً في الوجه السامة، المجموعة الثانية حققت بـ(1.0) ميكروجرام من السم الخام للفحص المقرر لكل جرام من وزن الجسم، وأخيراً المجموعة الثالثة حققت بـ(2.0) ميكروجرام من السم الخام للفحص المقرر.

وقد كانت التحاليل المعملية لهذه الدراسة أن سم حية السجاد سيبث انخفاضاً في تركيز كل من البروتين الكلي والألبومين والجلوبيوليينات وحيد البوتوك. ومن ناحية أخرى فقد أظهرت هذه الدراسة ارتفاعاً في مكونات الدم من البولينا، والكروماتين، وجلوبيوليينات، وثلاثي الجليريدي، والكرويتيكاك، وألبومين. وقد استمرت هذه التغيرات لأكثر من ساعتين. وذاك فان هذه التغيرات تدل على أن السم الخام لحية السجاد أحدث تآثيرات ضارة في الدم وكذلك في الكبد، والكلي.